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• Subfield of image restoration

• Recover the original, clean image starting from a noisy image

• The noise 𝜼 can be a white noise (e.g. 𝜼 ∼ 𝑁 𝟎, 𝜎'𝑰 ) or follow more 
complex distributions (e.g. signal dependent, spatially correlated)

𝒚 = 𝒙 + 𝜼

Denoiser

Image denoising



Applications of image denoising

• Provide the user with a pleasant and clean image

• Modular part for other image restoration tasks

• Preliminary step for high-level computer vision tasks and complex deep 
learning pipelines (e.g. autonomous driving)
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Classic methods
• Expert driven algorithms

• Exploit self-similarity between non-neighbouring pixels

• Computational intensive prediction

• Examples:

o Non Local Means: weighted average of all pixels

o BM3D: block matching and collaborative filtering

[Buades et al. CVPR 2005, 
Dabov et al. IEEE Transactions on image processing 2007]



Principles of deep denoisers

Pixelwise prediction and residual learning

[Zhang et al. CVPR 2017]



Principles of deep denoisers (2)
• Training with pairs of clean-noisy images

• Often, synthetically added noise
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Principles of deep denoisers (3)
Fully convolutional
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convolutional
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Principles of deep denoisers (4)
Wide receptive field



Loss functions for restoration
• ℓ' not the optimal choice

• Perceptually motivated loss functions

• Online swapping of loss functions to unstuck from local minima

[Zhao et al. IEEE Transactions on Computational Imaging 2016]



DnCNN and FFDNet
• Introduce residual learning and batch normalization

• Mainly designed for gaussian noise removal

[Zhang et al. IEEE Transactions on Image Processing 2017, Zhang et al. IEEE Transactions on Image Processing 2018]



NN3D
• Iterative application of a CNN and classic non-local filter (NLF)

• Increase the receptive field

• Good for images with structures

[Cruz et al. IEEE Signal Processing Letters 2018]



NLRN
• New module for non-local and learnable operations

[Liu et al. NIPS 2018]



NLRN (2)

• Recurrent neural network

o Recurrent state updated, with their non-local module, for T time steps

o Output provided after T-th steps

o Null input in the meanwhile

• Performance improvement for images with strong self-similarity

[Liu et al. NIPS 2018]



Noise2Noise

• It is possible to train a denoiser without clean data

• Using ℓ' as loss, the network learns to output the average of all plausible 
explanations

o Add zero mean noise to target images

[Lehtinen et al. ICML 2018]



CBDNet
• They propose a more realistic noise model

o Poisson-Gaussian for photon sensing and stationary disturbances

o In-camera processing (demosaicing, gamma correction, compression)

• Good performance for real photographs denoising

[Guo et al. CVPR 2019]



Summing up
• Deep learning models outperform classic methods

• Time consuming training

• Faster prediction

• Recent developments in DL denoising have been driven by:

o Practical considerations, e.g. more realistic noise models and training 
without clean data

o Transferring the priors at the foundation of classic methods into neural 
networks, e.g. non-local operations



Effective receptive field

• Classic methods effectively search for similarity in a window around the 
pixel

• Deep denoisers have the concept of receptive field

o The effective receptive field is smaller than the theoretical receptive field

[Luo et al. NIPS 2016]
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Research directions
Goal: Investigate new network architectures and training procedures to

• Widen/control the effective receptive field of deep denoisers

• Promote translation/rotation equivariance

Research directions:

• Model the influence of the effective receptive field (ERF) on the denoising 
performance

• Design RNN over shifted/rotated version of the input image to

o Increase the effective receptive field

o Guarantee shift and rotation equivariance

• Adapt the modules in RotEqNet, which provides rotation invariance, 
equivariance and covariance for high-level vision tasks [Marcos et al. ICCV 2017]



Design and implementation

• Design of a new module/architecture

• Software implementation

• Training with common datasets



Testing and writing

• Testing with widely accepted benchmarks

• Comparison with state of the art methods

• Conference paper writing
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