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Matching 3D shapes

Source: http://www.lix.polytechnique.fr/~maks/fmaps_course/

http://www.lix.polytechnique.fr/~maks/publications.html



Motivation

• Common step in geometry processing

• Allows for information transfer between 
shapes:

• Textures

• Segmentation

• Functions
Source: Ovsjanikov et al, ACM TOG 2012

Source: Melzi et al, ACM TOG 2019

Source: Melzi et al, ACM TOG 2019



Practical application: synthetic dataset creation for 
medical diagnosis

• Goal: automatically diagnose nasal pathologies 
from CFD simulations on nose scans

• Problem: too few nose scans to train a classifier

• Possible solution: build a synthetic dataset from a 
collection of healthy nose scans. How?

• An expert defines pathological deformations on 
one nose

• Deformations are transferred on scans of 
healthy noses

• Train 
Source: Schillaci et al, Inferring functional properties from CFD

This requires non-rigid 
matching between 3D shapes



Non-rigid matching: a complex problem

• Point-to-point correspondences live in a huge space, dependent on the size of 
the shapes

• Rigid matching can be compactly represented as a matrix

• Lack of a compact representation for non-rigid matching



Functional Maps
Matching represented as a correspondence of functions

ℳ

𝒇:ℳ → ℝ 𝒈:𝒩 → ℝ

𝒩

𝑻:ℳ → 𝒩

𝒈 = 𝒇 ∘ 𝑻−𝟏𝑻𝑭: ℱ ℳ,ℝ → ℱ(𝒩,ℝ)

𝒈 = 𝑻𝑭 𝒇
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Functional Maps

• 𝑇 can be recovered from 𝑇𝐹

• Not all functional maps have a correspondent point-to-point map

Functional maps are strictly more expressive than point-to-point maps



Functional Maps

• Given a basis {𝜙𝑖
ℳ} of real-valued functions defined on ℳ:

𝑓 =෍

𝑖

𝑎𝑖𝜙𝑖
ℳ

• 𝑇𝐹 is linear

• The transformation becomes:

𝑇𝐹 𝑓 = 𝑇𝐹 ෍

𝑖

𝑎𝑖𝜙𝑖
ℳ =෍

𝑖

𝑎𝑖𝑇𝐹 𝜙𝑖
ℳ



Functional Maps

• Let {𝜙𝑗
𝒩} be a basis of real-valued functions defined on 𝒩

• 𝑇𝐹 𝜙𝑖
ℳ = σ𝑗 𝑐𝑗𝑖𝜙𝑗

𝒩 for some 𝑐𝑗𝑖

• 𝑇𝐹 𝑓 = σ𝑖 𝑎𝑖 σ𝑗 𝑐𝑗𝑖𝜙𝑗
𝒩 = σ𝑗σ𝑖 𝑎𝑖𝑐𝑗𝑖𝜙𝑗

𝒩



Matrix representation
• 𝑐𝑗𝑖 are independent of 𝑓, depend only on the basis

• 𝑐𝑗𝑖 completely define the mapping between 𝜙𝑖
ℳ and 𝜙𝑗

𝒩

Given the two bases, 
the matrix 𝐶 fully 
represents the 
functional mapping

𝒇 =෍

𝒊

𝒂𝒊𝝓𝒊
ℳ 𝐠 =෍

𝒋

𝒃𝒋𝝓𝒋
𝒩

𝒃 = 𝑻𝑭 𝒂 = 𝑪 ⋅ 𝒂



Finding 𝐶
• Solve and optimization problem to compute 𝐶

• The objective function is given by the minimization of the error on function 
preservation:

min 𝐶 መ𝑓 − ො𝑔
2

• Different kinds of functions can be used:

• Descriptors

• Landmarks

• Segments

This leads to a linear 
problem in 𝐶



Descriptors
• Probe functions that should characterize any point of the shape as precisely as 

possible 

• Intrinsic descriptors are independent of isometric transformations

• Examples:

• HKS

• WKS

• Learn-based

Source: Sun et al, ESGP 2009
Source: Aubry et al, ICCV 2011



Choice of the Basis

• Crucial aspect of functional maps

• Desired properties:

• Compactness: most natural functions should be well approximated with a 
small number of basis elements

• Stability:  the space of functions spanned should be stable under small or near-
isometric shape deformations



Source: Melzi et al, Localized Manifold Harmonics, 2017

LB eigenbasis

• Eigenfunctions of the Laplace-Beltrami operator

• Manifold equivalent of Fourier basis

• Ordered in increasing frequency

• Selecting the first 𝑘 elements correspond to a low pass filter approximation

• Proved to be optimal for smooth (bounded variation) functions [Aflalo et al., 2015]

• Problems:

• Instable at higher frequencies -> not suitable for detailed functions

• Not well behaved for non smooth functions (e.g. indicators)



Binary Sparse Frame
Optimized for representation and transfer of step functions

[Melzi, Computer & Graphics, 2018]



Coordinate Manifold Harmonics
• Integrates LB eigenbasis with information about the spatial coordinates (extrinsic 

information)

• Designed for mesh structure transferring between shapes

• Requires similar pose

[Melzi et al., Computer & Graphics, 2019]

Original geometry Low pass representation Σ(𝑋) Σ(𝑌) Σ(𝑍)

− =



Localized Manifold Harmonics

• Integrates LB eigenfunctions with localized functions

• Still ordered in frequency, naturally extends LB eigenbasis

• Requires the definition of regions

[Melzi et al., Computer & Graphics, 2017]



Pointwise products of LB eigenfunctions

• A functional map preserves pointwise 
product of functions if and only if it 
corresponds to a point-to-point map

• Products contain information in 
higher frequencies

• Their mapping is given by the 
alignment of LB eigenfunctions only, 
but it is sensitive to noise

[Nogneng et al., Eurographics, 2018; Maggioli et al., Eurographics, 2021]



Research directions

• Goal: Find a compact and adaptive basis for the representation of real functions 
on manifolds.

• Able to represent and transfer detailed functions

• Two step process:

• Expand: create an overcomplete dictionary

• Select: reduce its dimension



Expansion

• Goal: create a large set of generator to cover a large functional space

• Redundancy is good to leave room for a good selection after

• Freedom to use different functions defined on the shape. Some options:

• LB eigenfunctions

• Descriptors

• Binary sparse frame

• Pointwise products of these functions



Selection

• Assumption: not all the spanned space is equally interesting

• Goal: select the most informative part of it

• Adaption to specific classes of functions

• Options:

• Principal Component Analysis

• Double sparsity



Principal Component Analysis

• Select an orthogonal set of generators of a subspace

• Given a set of functions, the subspace is the one that best approximates them

• Simple to apply

• Fast computation of representation, thanks to orthonormality



Double sparsity
• Learn a dictionary over a base dictionary:

𝐷 = Φ𝐴

• 𝐷 is the new dictionary

• Φ is the fixed base dictionary

• 𝐴 is sparse and it is learned from a set of samples 𝑋

• Sparsity over a predefined set of atoms acts as regularization

• In our case: Φ is the expanded basis, 𝑋 is a set of informative functions defined 
on the manifold. The goal is to learn 𝐴.

[Rubinstein et al., IEEE Transactions on Signal Processing, 2010]



Evaluation

• Experimental evaluation on widely used shape datasets: FAUST [Bogo et al., CVPR 
2014], TOSCA [Bronstein et al., Springer 2008] and SCAPE [Anguelov et al., NIPS 
2005]

• Comparable to current state-of-the-art methods

• Two metrics:

• Normalized approximation error for function representation and transfer

• Geodesic error for shape matching
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