
Interruptible Remote Attestation
via Performance Counters

Davide Li Calsi
davide.li@mail.polimi.it

Supervisor: Prof. Vittorio Zaccaria

1

mailto:davide.li@mail.polimi.it

Agenda

● Remote Attestation (RA)
● RA and Interrupts
● Performance Counters for Malware Detection
● A new approach to interruptible RA
● Target System’s Architecture
● Experiment Design
● Experimental Results
● Conclusions

2

Remote Attestation
My message to companies that think they haven’t been attacked is:
‘You’re not looking hard enough.’

James Snook

3

Low-end MCUs and security

Low computational power

Hundreds of KB of RAM/FLASH

Little hardware protection.

Cheap and flexible.

Employed in several use-cases

4

ST-Nucleo L-552 board by STM32

Attacks*

● Access to sensors to collect sensitive data
○ Use microphones to spy on conversations

○ Use sensors to spot empty houses and rob them

● Control actuators to cause accidents
○ Smart ovens that caused fires

○ Taking over smart lights to cause epileptic seizures

5
*A Survey on IoT Security: Application Areas, Security Threats, and Solution Architectures: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8742551

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8742551

Remote Attestation*

Remote Verifier attests the integrity of a target Prover.

Detect compromised devices.

Focus on static attestation: attest Program Memory only

6
*Remote Attestation: A Literature Review: https://arxiv.org/abs/2105.02466

https://arxiv.org/abs/2105.02466

Remote Attestation (2)

Verifier Prover

Challenge

Integrity evidence

Verify response

7

nonce

h(M,nonce)

Verification

Static attestation: know benign

configurations

Pre-compute benign evidence.

Compare with the received one.

8

DB Nonce

Valid List

Sent
evidence Result

RA and Interrupts
I haven’t spoken to my wife in years. I didn’t want to interrupt her.

Rodney Dangerfield

9

Interrupts in RA - Relocation

Benign

Benign

Malware

TIME 10

A

Benign
✅

Benign

Malware

A

Malware
✅

Benign

Benign

A

Malware
✅

Benign
✅

Benign

A

Interrupts in RA - Disabled

Must disable interrupts to fight roving malware.

Self-relocating: erases itself and moves to a location that was already

attested.

Transient malware: self-erases to later re-infect the system.

11

The main issue

Interrupts are a key feature , should not be disabled for too long.

Grant the system responsiveness.

Order of magnitude: hundreds of ms on average.

Time-critical cannot tolerate it.

12

Shuffled Measurements Against Roving Malware*

Attest in pseudo-random order

Probabilistic guarantees, depending on the attacker’s knowledge (63%).

Repeat attestation multiple times in a row to increase probabilities.

Partial interruption: attestation of single blocks is still atomic.

13
*Remote attestation of IoT devices via SMARM: Shuffled measurements against roving malware: https://ieeexplore.ieee.org/document/8383885

https://ieeexplore.ieee.org/document/8383885

Memory Locks*

Make memory read-only (temporarily)

Many implementations, depending on what you lock.

Based on costly system calls and MMU. Unfeasible for low end

devices.

14
*Temporal Consistency of Integrity-Ensuring Computations and Applications to Embedded Systems Security: https://dl.acm.org/doi/10.1145/3196494.3196526

https://dl.acm.org/doi/10.1145/3196494.3196526

Performance Counters for
Malware Detection
What we can control is our performance and execution, and that’s what
we are focusing on.

Bill Belichick

15

Which counters?

Natively present in many renown architectures.

ARM: PMU or DWT

Atmel: configurable 16-bits counters

Count the occurrences of micro-architectural events:

● branches
● cache hits/misses
● CPI
● clock cycles spent doing something meaningful

16

Two phases

Offline phase: run some attacks, collect counters, train a

classifier

Online phase: feed counters to the pre-trained classifier,

classify them

17

Classify the result

Several models were evaluated*.

Decision Trees, SVM, K-NN…

Papers report accuracies between 60% and 90% (and

above)

18

*ConFirm: Detecting firmware modifications in embedded systems using Hardware Performance Counters:https://ieeexplore.ieee.org/document/7372617
HPCMalHunter: Behavioral malware detection using hardware performance counters and singular value decomposition:
https://ieeexplore.ieee.org/document/6993402

https://ieeexplore.ieee.org/document/7372617
https://ieeexplore.ieee.org/document/6993402

A new approach to
interruptible RA
Making progress on longstanding challenges requires a different lens
and a new approach

Ayanna Presley

19

Summing-up

20

Prover

Program
memory

Data
memory

Perf. Counters

Verifier

Classifier

Verify
attestation
response

Final
outcome

Attestation
Response

branches: 71
cache hits: 34

…

Two phases (Again)

Offline phase: run several malicious relocations that interrupt the
Attestation Routine. Obtain data and train a Binary Classifier.

Online phase: model classifies the measured counters. Determine if
malware tried to escape detection.

21

Counters

● Architectural counters
○ Hardware-managed

○ Count micro-architectural events

○ Literature agrees they are beneficial

● Applicative counters
○ Software-managed

○ Count high-level events

○ Controversy: overhead, protection, definition

22

Target System’s Architecture
Each new situation requires a new architecture

Jean Nouvel

23

Overview

24

Prover

Malware

Attestation
Routine

Application

Verifier

Binary
Classifier

Controllable
Parameters

Uncontrollable
Parameters Model

Parameters

Attestation
Verification

Uncontrollable Parameters

Parameters characterizing the attack type.

Attacks are unpredictable

1. Malware Type
a. Self-relocating
b. Transient

2. Malware Size
a. Taken from a reasonable set of possible values

25

Prover

MalwareUncontrollable
Parameters

Controllable Parameters

Characterize the application running on
the MCU.

Controllable because defined and
controlled by the stakeholders.

1. Entropy Level: the degree of
unpredictability of the application.

2. Activity Level: the intensity of the
application’s activity.

26

Prover

Controllable
Parameters

Application

Model’s Parameters

Several choices affect the Classifier:

● model

● preprocessing

● enhancements

Also under the stakeholders’ control, but…

…we consider them separately because

they are Verifier-side parameters.
27

Verifier

Binary
Classifier

Model
Parameters

Experiment Design
It doesn't matter how beautiful your theory is, it doesn't matter how
smart you are. If it doesn't agree with experiment, it's wrong.

Richard P. Feynman

28

Goals

G1: Detection Capabilities

Classifier should have satisfying:

● Accuracy
● Precision
● Recall (detect malware)
● F1 score (imbalanced dataset)

G2: Overhead

Low-power assumption, technique

should be lightweight.

29

Questions to answer

30

1. Detection capability of architectural counters

2. Detection capability of architectural counters and applicative counters

3. Improve architectural counters?

4. Most relevant counters?

5. Overhead:
a. hardware role
b. application role

Prover/verifier setup

31

Prover (Cortex-M33)

Attestation
Routine

Malicious Task

Application
Tasks

Mal. Size
Mal. Type

Activity-Entropy
level

Dataset

Verifier

Classifier

VARIABLE

FIXED

DWT,
Iterations

Varying (Un)Controllable Parameters

32

Malware type: only two values (self-relocating vs transient)

Size: low-power MCU host small malware samples.

Fixed a set of reasonable sizes (checking malware repositories)

Repeated 16 times with different Activity-Entropy combinations…

… for a total of 16 datasets

Classifiers

33

Tested three Classifiers:
Logistic Regression, Decision Tree, Support Vector Machine

Using scikit-learn library for implementations

Each model trained and tested on every dataset.

Results are 4x4 matrices (each square ≡ Activity-Entropy combination)

Experimental Results
In the spirit of science, there really is no such thing as a 'failed
experiment.' Any test that yields valid data is a valid test.

Adam Savage

34

SVM: Architectural Counters Only

35

SVM: Full set of counters

36

Architectural Counters and Data Augmentation

37

Feature Selection

38

Overhead

Counters are updated via hardware.

Low overhead!

Overflow degradation: 32 bits

prevent it

39

Overhead: Applicative Counters
Overhead depends on events.

Rough estimate if you know the average frequency of events

Some real examples:

1. Weather Monitor: frequencies from 0.3 to 2 Hz
2. Fall Detection Device: 32 Hz
3. Parkinson’s Disease Monitor: 50 Hz

40

Conclusions
Life is the art of drawing sufficient conclusions from
insufficient premises

Samuel Butler

41

G1

We claim that G1 was achieved.

Good performance, even without applicative counters.

Adding them improves classifiers

High Activity makes the problem much harder

42

G2

Architectural counters satisfy requirements: OK

Low-frequency applicative counters satisfy requirements: OK

Need high-frequency applicative counters: KO

43

Guidelines

Absolutely need low overhead? Architectural counters

Architectural counters provide low detection rate? Enhance the Classifier

Detection rate still too low? Happy with higher overhead? Applicative counters

44

Thanks for your attention!

45

Take time to be kind and to say ‘thank you’

Zig Ziglar

