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Remote Attestation
My message to companies that think they haven’t been attacked is: 
‘You’re not looking hard enough.’

James Snook
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Low-end MCUs and security

Low computational power

Hundreds of KB of RAM/FLASH

Little hardware protection.

Cheap and flexible.

Employed in several use-cases
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ST-Nucleo L-552  board by STM32



Attacks*

● Access to sensors to collect sensitive data
○ Use microphones to spy on conversations

○ Use sensors to spot empty houses and rob them

● Control actuators to cause accidents
○ Smart ovens that caused fires

○ Taking over smart lights to cause epileptic seizures
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*A Survey on IoT Security: Application Areas, Security Threats, and Solution Architectures: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8742551

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8742551


Remote Attestation*

Remote Verifier attests the integrity of a target Prover.

Detect compromised devices.

Focus on static attestation: attest Program Memory only
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*Remote Attestation: A Literature Review: https://arxiv.org/abs/2105.02466

https://arxiv.org/abs/2105.02466


Remote Attestation (2)

Verifier Prover

Challenge

Integrity evidence

Verify response
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Verification

Static attestation: know benign 

configurations 

Pre-compute benign evidence.

Compare with the received one.
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RA and Interrupts
I haven’t spoken to my wife in years. I didn’t want to interrupt her.

Rodney Dangerfield
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Interrupts in RA - Relocation
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Interrupts in RA - Disabled

Must disable interrupts to fight roving malware.

Self-relocating: erases itself and moves to a location that was already 

attested.

Transient malware: self-erases to later re-infect the system.
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The main issue

Interrupts are a key feature , should not be disabled for too long.

Grant the system responsiveness.

Order of magnitude: hundreds of ms on average. 

Time-critical cannot tolerate it.
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Shuffled Measurements Against Roving Malware*

Attest in pseudo-random order

Probabilistic guarantees, depending on the attacker’s knowledge (63%). 

Repeat attestation multiple times in a row to increase probabilities.

Partial interruption: attestation of  single blocks is still atomic.
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*Remote attestation of IoT devices via SMARM: Shuffled measurements against roving malware: https://ieeexplore.ieee.org/document/8383885

https://ieeexplore.ieee.org/document/8383885


Memory Locks*

Make memory read-only (temporarily)

Many implementations, depending on what you lock.

Based on costly system calls and MMU. Unfeasible for low end 

devices.
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*Temporal Consistency of Integrity-Ensuring Computations and Applications to Embedded Systems Security: https://dl.acm.org/doi/10.1145/3196494.3196526

https://dl.acm.org/doi/10.1145/3196494.3196526


Performance Counters for 
Malware Detection
What we can control is our performance and execution, and that’s what 
we are focusing on.

Bill Belichick
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Which counters?

Natively present in many renown architectures.

ARM: PMU or DWT 

Atmel: configurable 16-bits counters

Count the occurrences of micro-architectural events:

● branches
● cache hits/misses
● CPI
● clock cycles spent doing something meaningful
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Two phases

Offline phase: run some attacks, collect counters, train a 

classifier

Online phase: feed counters to the pre-trained classifier, 

classify them
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Classify the result

Several models were evaluated*.

Decision Trees, SVM, K-NN…

Papers report accuracies between 60% and 90% (and 

above)
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*ConFirm: Detecting firmware modifications in embedded systems using Hardware Performance Counters:https://ieeexplore.ieee.org/document/7372617
HPCMalHunter: Behavioral malware detection using hardware performance counters and singular value decomposition: 
https://ieeexplore.ieee.org/document/6993402

https://ieeexplore.ieee.org/document/7372617
https://ieeexplore.ieee.org/document/6993402


A new approach to 
interruptible RA
Making progress on longstanding challenges requires a different lens 
and a new approach

Ayanna Presley

19



Summing-up
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Two phases (Again)

Offline phase: run several malicious relocations that interrupt the 
Attestation Routine. Obtain data and train a Binary Classifier.

Online phase: model classifies the measured counters. Determine if 
malware tried to escape detection.
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Counters

● Architectural counters
○ Hardware-managed

○ Count micro-architectural events

○ Literature agrees they are beneficial

● Applicative counters
○ Software-managed

○ Count high-level events

○ Controversy: overhead, protection, definition
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Target System’s Architecture
Each new situation requires a new architecture

Jean Nouvel
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Overview
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Uncontrollable Parameters

Parameters characterizing the attack type.

Attacks are unpredictable

1. Malware Type
a. Self-relocating
b. Transient

2. Malware Size
a. Taken from a reasonable set of possible values

25

Prover

MalwareUncontrollable 
Parameters



Controllable Parameters

Characterize the application running on 
the MCU.

Controllable because defined and 
controlled by the stakeholders.

1. Entropy Level: the degree of 
unpredictability of the application. 

2. Activity Level: the intensity of the 
application’s activity. 
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Model’s Parameters

Several choices affect the Classifier: 

● model

● preprocessing 

● enhancements

Also under the stakeholders’ control, but…

…we consider them separately because 

they are Verifier-side parameters.
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Experiment Design
It doesn't matter how beautiful your theory is, it doesn't matter how 
smart you are. If it doesn't agree with experiment, it's wrong.

Richard P. Feynman
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Goals

G1: Detection Capabilities

Classifier should have satisfying:

● Accuracy
● Precision
● Recall (detect malware)
● F1 score (imbalanced dataset)

G2: Overhead

Low-power assumption, technique 

should be lightweight.
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Questions to answer
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1. Detection capability of architectural counters

2. Detection capability of architectural counters and applicative counters

3. Improve  architectural counters?

4. Most relevant counters?

5. Overhead:
a. hardware role
b. application role



Prover/verifier setup
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Varying (Un)Controllable Parameters
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Malware type: only two values (self-relocating vs transient)

Size: low-power MCU host small malware samples. 

Fixed a set of reasonable sizes (checking malware repositories)

Repeated 16 times with different Activity-Entropy combinations…

… for a total of 16 datasets



Classifiers
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Tested three Classifiers: 
Logistic Regression, Decision Tree, Support Vector Machine

Using scikit-learn library for implementations

Each model trained and tested on every dataset.

Results are 4x4 matrices (each square ≡ Activity-Entropy combination)



Experimental Results
In the spirit of science, there really is no such thing as a 'failed 
experiment.' Any test that yields valid data is a valid test.

Adam Savage
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SVM: Architectural Counters Only
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SVM: Full set of counters
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Architectural Counters and Data Augmentation
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Feature Selection
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Overhead

Counters are updated via hardware. 

Low overhead!

Overflow degradation: 32 bits 

prevent it
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Overhead: Applicative Counters
Overhead depends on events.

Rough estimate if you know the average frequency of events

Some real examples:

1. Weather Monitor: frequencies from 0.3 to 2 Hz
2. Fall Detection Device: 32 Hz
3. Parkinson’s Disease Monitor: 50 Hz
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Conclusions
Life is the art of drawing sufficient conclusions from 
insufficient premises

Samuel Butler
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G1

We claim that G1 was achieved.

Good performance, even without applicative counters.

Adding them improves classifiers

High Activity makes the problem much harder
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G2

Architectural counters satisfy requirements: OK

Low-frequency applicative counters satisfy requirements: OK

Need high-frequency applicative counters: KO
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Guidelines

Absolutely need low overhead? Architectural counters

Architectural counters provide low detection rate? Enhance the Classifier

Detection rate still too low? Happy with higher overhead? Applicative counters
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Thanks for your attention!
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Take time to be kind and to say ‘thank you’

Zig Ziglar


